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 STANDARD ATOMIC WEIGHTS OF THE ELEMENTS (IUPAC 2013)

* These elements have no stable isotopes and standard atomic weights are not listed, except for four 
of them (Bi, Th, Pa and U), which have characteristic terrestrial isotopic compositions with standard 
atomic weights given.

** These are the current best estimates decided by IUPAC. The number in parentheses after each value 
indicates the uncertainty of estimation of the last digit.

† The variation in the atomic weights of these elements, depending on the origin and treatment of the 
sample, is greater than the uncertainty of their measurement. In these cases, the atomic weights are 

listed by IUPAC as an interval; the two values listed are the upper and lower limits of the range of 
values.

†† Where calculations of extremely high accuracy are not required, these working values (the standard 
atomic weights abridged to four significant figures) can be used. For those elements whose standard 
atomic weights are expressed as intervals, these are not abridged values, but working values selected 
by IUPAC from “conventional atomic weights." See Section 2.15.

    Standard Working
Element  Symbol Z Atomic Weight** Values††

    Standard Working
Element Symbol Z Atomic Weight** Values††

Actinium* Ac 89  
Aluminum Al 13 26.981 5385(7) 26.98
Americium* Am 95  
Antimony Sb 51 121.760(1) 121.8
Argon Ar 18 39.948(1) 39.95
Arsenic As 33 74.921 595(6) 74.92
Astatine* At 85  
Barium Ba 56 137.327(7) 137.3
Berkelium* Bk 97  
Beryllium Be 4 9.012 1831(5) 9.012
Bismuth Bi 83 208.980 40(1) 209.0
Bohrium Bh 107  
Boron B 5 [10.806, 10.821]† 10.81
Bromine Br 35 [79.901, 79.907]† 79.90
Cadmium Cd 48 112.414(4) 112.4
Calcium Ca 20 40.078(4) 40.08
Californium* Cf 98  
Carbon C 6 [12.0096, 12.0116]† 12.01
Cerium Ce 58 140.116(1) 140.1
Cesium Cs 55 132.905 451 96(6) 132.9
Chlorine Cl 17 [35.446, 35.457]† 35.45
Chromium Cr 24 51.9961(6) 52.00
Cobalt Co 27 58.933 194(4) 58.93
Copernicium* Cn 112  
Copper Cu 29 63.546(3) 63.55
Curium* Cm 96  
Darmstadtium* Ds 110  
Dubnium* Db 105  
Dysprosium Dy 66 162.500(1) 162.5
Einsteinium* Es 99  
Erbium Er 68 167.259(3) 167.3
Europium Eu 63 151.964(1) 152.0
Fermium* Fm 100  
Flerovium* Fl 114  
Fluorine F 9 18.998 403 163(6) 19.00
Francium* Fr 87  
Gadolinium Gd 64 157.25(3) 157.3
Gallium Ga 31 69.723(1) 69.72
Germanium Ge 32 72.630(8) 72.63
Gold Au 79 196.966 569(5) 197.0
Hafnium Hf 72 178.49(2) 178.5
Hassium* Hs 108  
Helium He 2 4.002 602(2) 4.003
Holmium Ho 67 164.930 33(2) 164.9
Hydrogen H 1 [1.007 84, 1.008 11]† 1.008
Indium In 49 114.818(1) 114.8
Iodine I 53 126.904 47(3) 126.9
Iridium Ir 77 192.217(3) 192.2
Iron Fe 26 55.845(2) 55.85
Krypton Kr 36 83.798(2) 83.80
Lanthanum La 57 138.905 47(7) 138.9
Lawrencium* Lr 103  
Lead Pb 82 207.2(1) 207.2
Lithium Li 3 [6.938, 6.997]† 6.94
Livermorium* Lv 116  
Lutetium Lu 71 174.9668(1) 175.0
Magnesium Mg 12 [24.304, 24.307]† 24.31
Manganese Mn 25 54.938 044(3) 54.94
Meitnerium* Mt 109  

Mendelevium* Md 101  
Mercury Hg 80 200.592(3) 200.6
Molybdenum Mo 42 95.95(1) 95.95
Neodymium Nd 60 144.242(3) 144.2
Neon Ne 10 20.1797(6) 20.18
Neptunium* Np 93  
Nickel Ni 28 58.6934(4) 58.69
Niobium Nb 41 92.906 37(2) 92.91
Nitrogen N 7 [14.006 43, 14.007 28]† 14.01
Nobelium* No 102  
Osmium Os 76 190.23(3) 190.2
Oxygen O 8 [15.999 03, 15.999 77]† 16.00
Palladium Pd 46 106.42(1) 106.4
Phosphorus P 15 30.973 761 998(5) 30.97
Platinum Pt 78 195.084(9) 195.1
Plutonium* Pu 94  
Polonium* Po 84  
Potassium K 19 39.0983(1) 39.10
Praseodymium Pr 59 140.907 66(2) 140.9
Promethium* Pm 61  
Protactinium* Pa 91 231.035 88(2) 231.0
Radium* Ra 88  
Radon* Rn 86  
Rhenium Re 75 186.207(1) 186.2
Rhodium Rh 45 102.905 50(2) 102.9
Roentgenium* Rg 111  
Rubidium Rb 37 85.4678(3) 85.47
Ruthenium Ru 44 101.07(2) 101.1
Rutherfordium* Rf 104  
Samarium Sm 62 150.36(2) 150.4
Scandium Sc 21 44.955 908(5) 44.96
Seaborgium* Sg 106  
Selenium Se 34 78.971(8) 78.97
Silicon Si 14 [28.084, 28.086]† 28.09
Silver Ag 47 107.8682(2) 107.9
Sodium Na 11 22.989 769 28(2) 22.99
Strontium Sr 38 87.62(1) 87.62
Sulfur S 16 [32.059, 32.076]† 32.06
Tantalum Ta 73 180.947 88(2) 180.9
Technetium* Tc 43  
Tellurium Te 52 127.60(3) 127.6
Terbium Tb 65 158.925 35(2) 158.9
Thallium Tl 81 [204.382, 204.385]† 204.4
Thorium* Th 90 232.0377(4) 232.0
Thulium Tm 69 168.934 22(2) 168.9
Tin Sn 50 118.710(7) 118.7
Titanium Ti 22 47.867(1) 47.87
Tungsten W 74 183.84(1) 183.8
Ununoctium* Uuo 118  
Ununpentium* Uup 115  
Ununseptium* Uus 117  
Ununtrium* Uut 113  
Uranium* U 92 238.028 91(3) 238.0
Vanadium V 23 50.9415(1) 50.94
Xenon Xe 54 131.293(6) 131.3
Ytterbium Yb 70 173.054(5) 173.1
Yttrium Y 39 88.905 84(2) 88.91
Zinc Zn 30 65.38(2) 65.38
Zirconium Zr 40 91.224(2) 91.22
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Chemistry: Human Activity, Chemical Reactivity
(CHACR): A Fully Integrated Print/Electronic Resource

What Will the CHACR Student Experience?
The authors have designed and created Chemistry: Human Activity, Chemical Reactivity
(CHACR) in ways consistent with their commitment to what should constitute a valu-
able learning experience in chemistry. A student who studies chemistry with CHACR
will develop a sense of what modern chemistry is, why chemistry is important, what
chemists do, how chemists have come to their current understandings, and what tech-
niques chemists use to arrive at their shared understandings. The student will also appre-
ciate the growth of chemical knowledge through interaction of observations, accepted
“facts,” and modelling. These emphases, reflected in the title, are equally important for
chemistry majors and for those who learn chemistry as a preparation for studies in other
disciplines.

The CHACR student will arrive at this appreciation of chemistry as a human
endeavour within the context of a body of knowledge that is clearly and rigorously
presented, at an appropriate level for first-year university students. He or she will have
benefitted from the authors’ knowledge of students’ learning of chemistry, derived from
experience and participation in chemistry education research.

The CHACR student will experience chemistry from a number
of perspectives that have governed CHACR’s design:

1. The CHACR student will see chemistry as a human
activity. Chemistry is about more than chemicals and their struc-
tures. Chemistry is about people observing, experimenting,
measuring, thinking, imagining, making sense, modelling,
designing, communicating, and solving problems. The CHACR
student will recognize that chemistry is done by people, and that
it is possible for a student to be part of this chemistry commu-
nity. This human activity pervades all of the discussion of chem-
ical reactivity.

How? The view of chemistry as an exciting
human activity is emphasized by devel-
oping the chemistry content out of contem-
porary stories that illustrate how people
come to understand and use chemical phe-
nomena. In Chapter 1 and the opening sec-
tion of all other chapters, students encounter
“rich contexts” that emphasize the involve-
ment of people in chemistry research and
applications, and the ability of these people,
through their accumulated knowledge, to
solve problems and improve our quality of
life. These rich contexts are designed to
trigger in the CHACR student a motivation
to understand the principles discussed
within each chapter.
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CHACR describes observable chemical behaviours before the ideas, theories, and
models that are used to explain them: consistent with the nature of chemical progress,
models are presented as human constructions to explain the facts, rather than as facts in
themselves.

2. The CHACR student will develop understandings of why chemists believe
what they believe. Chemistry students are usually expected to believe—solely on the
authority of the instructor—a myriad of accepted “facts”: the composition of compounds,
connectivity of atoms in molecules, bond angles, electronegativities of atoms in molecules,
and molecular shapes, for example. The CHACR student gets some exposure to the
methods that chemists use to obtain the evidence that gives them confidence in their
“facts” and their models. What a pity it would be if chemistry students did not have a basic
understanding of the sources of chemical knowledge. Could you imagine students in an
astronomy course, for example, learning about our universe without some familiarity with
how astronomers arrive at their knowledge?

How? The CHACR student is introduced relatively early, with the aid of interactive electronic
resources, to various spectroscopic techniques for structure determination, at an understand-
able and usable level. One doesn’t need to know the theory of IR or NMR spectroscopy or

mass spectrometry to use them
for some purposes—any more
than one needs to understand
the thermodynamics of cars to
use them. The relationships
between structure and reac-
tivity are emphasized: before
presenting the structure of an
ethanol molecule and the inter-
molecular forces between mol-
ecules, the student is asked to
examine the physical properties

of the substance ethanol and the experimental spectroscopic evidence that leads to our models
of the dependence of intermolecular forces on structure.

To take another example, in Chapter 8, the CHACR student is not simply presented
with a mysterious notion of atomic orbitals, with meaningless quantum numbers plucked
“out of the blue.” Rather, given periodic trends in atomic properties, CHACR raises the
rigour bar to discuss how chemists came to rationalize the electronic structure in atoms,
and quantum numbers are presented logically as particular values of parameters in the
wave equation that give rise to standing waveforms. Again, one doesn’t need to be able
to solve the Schrödinger equation to obtain a sense of the origin of atomic quantum num-
bers.

3. The CHACR student will see that chemistry is both contemporary and
relevant. The CHACR student will experience chemistry as a current, living, dynamic,
and relevant subject, with the potential to improve the quality of life on our planet. He or
she is exposed to samples of cutting-edge research and environmental and industrial
applications integrated into the subject matter. In this way, the CHACR student will also
develop a sense of the responsibility to use molecular sciences and technologies in sustain-
able and ethical ways.

How? The motivating contexts that open each chapter address topics such as drugs in
sport, blood chemistry, methane clathrate hydrates, green chemistry, ocean acidification,
bacterial communication, and alternative energy—all topical issues that exemplify the
interaction of chemistry with our world and our lives, and that illustrate the importance of
expanding our knowledge of chemistry.
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Particular emphasis is given to developing a basic
understanding of the chemistry of our planetary life-
support systems such as the atmosphere and oceans, and
how they are dependent on human and natural activity.

For example, in the discussion of acid-base chemistry
(Chapter 14), CHACR goes beyond the traditional treat-
ment of percentage ionization of a solution of a weak acid
(how often does one need to know the pH of a 0.01 mol L�1

solution of propanoic acid?) to estimate the relative concen-
trations of protonated and deprotonated weak acid species
when the pH of solution is governed by another agent. The
calculations are simpler, but the significance much greater.

Cutting-edge chemistry from around the world is inte-
grated into the coverage of chemistry concepts. Some
Canadian examples include the following:

• David Dolphin and his research group in Vancouver
have played a key role in the development of photody-
namic therapy for the treatment of cancer and age-
related macular degeneration.

• Virginia Walker at Queen’s University studies
antifreeze proteins in fish, which may be useful in
preventing methane clathrate plugs in pipelines.

• The world-class Canadian Light Source in Saskatoon creates and stores a high-energy
beam of electrons that produces synchrotron light that is one million times brighter
than sunlight.

• Chemists at the National Research Council laboratories in Ottawa use solid-state
nuclear magnetic resonance (NMR) spectroscopy to confirm the structures of new
crystal polymorphs.

• Canada’s Ballard Power is a world leader in hydrogen-oxygen fuel
cell technology.

• Vaclav Smil in Manitoba has contributed to our understanding of the
role of planetary nitrogen cycles, which has application both in the pro-
duction of food and in our understanding of our atmosphere and oceans.

4. The CHACR student is the beneficiary of findings from science
education research. There is, of course, more to teaching chemistry
than presenting some words and symbols and hoping that students attain
the same understanding as the teacher. The CHACR authors are familiar
with a vast literature of research in chemistry education that has diag-
nosed inadequate understandings of even very able students, and that
identifies characteristics of specific concepts and topics that present chal-
lenges to quality understanding.* The authors have taken account of their
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* The following are a few of many such research papers:

Bent, H.A. (1984). “Uses (and Abuses) of Models in Teaching Chemistry.” Journal of Chemistry
Education, 61(9): 774.

Bucat, R. (2000). “Pedagogical Content Knowledge as a Way Forward.” Chemistry Education: Research
and Practice, 5(3): 215.

Coll, R.K., and Taylor, N. (2002). “Mental Models in Chemistry: Senior Chemistry Students’ Mental
Models of Chemical Bonding.” Chemistry Education: Research and Practice in Europe, 3(2): 175.

Mahaffy, P. (2006). “Moving Chemistry Education into 3D: A Tetrahedral Metaphor for Understanding
Chemistry.” Journal of Chemistry Education, 83(1): 49.

Tasker, R., & Dalton, R. (2006). “Research into Practice: Visualisation of the Molecular World Using
Animations.” Chemistry Education Research and Practice, 7(2): 141–59. See tinyurl.com/kl89xj7.

A YouTube video presentation at tinyurl.com/nyxjf9h demonstrates the
use of this interactive tool in Chapter 15 showing how issues of ocean
acidification integrate pH dependence on CO2 concentration in the atmos-
phere, acid-base speciation change with pH, and solubility equilibria.

C
ou

rt
es

y 
K

in
g’

s 
C

en
tr

e 
fo

r 
V

is
ua

liz
at

io
n 

in
 S

ci
en

ce
, w

w
w

.k
cv

s.
ca

O
lg

a 
M

ilt
so

va
/

Sh
ut

te
rs

to
ck

.c
om

©
iS

to
ck

ph
ot

o.
co

m
/T

om
m

L

15526_00_FM.qxp  3/1/14  12:40 PM  Page xix

Copyright 2015 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).



pedagogical content knowledge (knowledge about the teaching and learning of chemistry,
over and above knowledge of chemistry itself) in the design and detail of CHACR.

(a) The triangle of chemistry operations. The CHACR student
develops an awareness of the three levels of operation in chemistry:
(i) the observable level, pertaining to observable substances and phe-
nomena; (ii) the molecular level of molecules, atoms, and ions, which
is used to model chemical behaviour; and (iii) the symbolic level,
involving language and symbolism that chemists use for communica-
tion and mathematical relationships. Lack of distinction among these
is recognized as a major contributor to poor understanding of chem-
istry.

How? Four examples: First, the extraordinary electronic interactive
resources that are a part of CHACR help the student to translate
words, symbols, and equations into visualizations of the “reality.”
Second, the CHACR student will recognize clearly, through many
carefully worded examples, that chemists use models of the imagined
world of atoms, molecules, and ions to explain observable chemical
behaviour. Third, the CHACR student will distinguish among, for
example, meanings of the symbol Na as the name of an element, a
symbol for sodium atoms, and, as Na(s), a symbol for the substance
sodium—thus avoiding potential confusion when this symbol is used
in various contexts.

CHACR does not say “the structure of sucrose” when we mean the
structure of sucrose molecules, and neither does it talk about “axial and
equatorial bonds in cyclohexane” (rather, “in cyclohexane molecules”).
We believe that a few extra words can have a profound influence on stu-
dents’ interpretations.

Fourth, reaction mechanisms are usually represented by structural
equations that suggest the interaction of just one molecule or ion with
another. Reaction kinetics only makes sense if we visualize a dynamic,
many-particle reaction mixture in which events are controlled at least
partly by probabilities. CHACR uses language that helps create such
images, making it clear that the mechanistic equation refers to just one
of billions of events that happen at various times.

(b) A sequence of presentation based on the “need to know.” The
CHACR student will encounter some topics in two or more “bites” on a
need-to-know basis—each time learning just enough chemistry to
understand the current context. Although the topics are presented in the
traditional sequence, this stepwise curriculum is designed to maintain
the student’s interest.* An understanding of any topic depends on under-
standing concepts, ideas, and relationships in others. The slightly inter-
woven presentation here contrasts with the usual single-block treatment
of each topic that requires the student to trust in an eventual payoff in
the future.
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* See, for example, Johnstone, A.H. (2000). “Teaching of Chemistry—Logical or Psychological?”
Chemistry Education: Research and Practice in Europe, 1(1): 9–15.

A YouTube video presentation at tinyurl.com/k2x34sr
demonstrates how the research-based VisChem
Learning Design is used in CHACR to address specific
misconceptions about reactions at the molecular level—in
this case, the oxidation-reduction reaction between Cu(s)
and Ag�(aq).
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Two YouTube video presentations at tinyurl.com/
l2n5wr6 and tinyurl.com/lgygnu9 demonstrate our
visualization approach using student-constructed
simulations and prepared simulations in Odyssey to
portray dynamic, many-particle mixtures and reactions.
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How? For example, much of the chemistry presented beyond
Chapter 7 depends on broad knowledge of the characteristics of
precipitation reactions, oxidation-reduction reactions, acid-
base reactions, and complexation reactions; these are described
to sufficient levels in Chapter 6 long before these reaction types
are discussed in more detail in Chapters 14–16. A basic idea of
covalent bonding is presented in Chapter 3, while the theories
of bonds are not discussed until Chapter 10. After all, one can
do an awful lot of chemistry, recognizing that the molecules are
held together by covalent bonds, without knowing about
models of what a bond is.

In Chapter 6, the CHACR student can explore the depend-
ence of molecular polarity on molecular shape. At that point,
shapes of molecules are presented as “givens,” based on exper-
imental evidence. The traditional use of the VSEPR model as a
means of predicting shapes is not presented until Chapter 10.
The authors believe that the consequences of molecular shape
on intermolecular forces and properties should not be obfus-
cated by discussions of a model that attempts (with severe lim-
itations) to rationalize those shapes.

(c) Avoiding common student misconceptions. The CHACR student will be less prone to
common misconceptions that have been identified by research in students’ understandings
of topics such as chemical equations, stoichiometry, and chemical equilibrium, for
example.

How? By being aware of the findings of chemistry education research, the authors have
been particularly clear in their approach, use of language, and explanations (including
examples, analogies, and electronic resources) to lessen the likelihood of the misconcep-
tions commonly identified. For example, the discussion entitled “What Chemical Equations
Cannot Tell Us” explicitly lists common misconceptions of which students should be aware.
The e-resources in CHACR are designed with the same pedagogical awareness in mind.

5. The CHACR student will attain deep learning through visualizing the molec-
ular world. There is a valid argument that the ability to visualize molecules and ions,
either singly or in aggregates such as reaction mixtures, is perhaps the single most impor-
tant factor in achieving a deep understanding of chemistry. Static and dynamic visualiza-
tions bring meaning to the abstract notation of
chemistry, and provide a molecular-level
model for understanding macroscopic chem-
ical behaviours. The CHACR student will
develop particularly powerful explanatory
powers through linking the macroscopic to the
imagined submicroscopic world.

How? With a click, the CHACR student will be
able to access molecular-level electronic
resources that use computational molecular
modelling to produce visual models (multi-
particle simulations; electrostatic potential
maps, bonding and polarity depictions) with real
explanatory and predictive power to answer
“What if . . . ?” questions. For example, the stu-
dent will see simulations of the dissolution of
sodium chloride in water, with focus on the
process as a competition between opposing
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Frame from a dynamic simulation in Odyssey of dipole–dipole
interactions between dimethylsulfoxide molecules in the liquid
state. Dipoles are represented by yellow arrows.
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In Odyssey, students can plot data and discover relationships for themselves—in this
case, between ionic charge and average binding energy due to aquation.
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forces—crystal lattice forces opposed by aquation of the Na� and Cl– ions. He or she can see
that the aquated ions are relatively independent, and that reactions are those of the individual
aquated ions, rather than of a NaCl species.

The student can see simulations of melting of crystalline substances (such as ice), tran-
sient hydrogen bonding in substances and mixtures, and vibrational conformers of long-
chain molecules. He or she can conduct pseudo-experiments on simulated gaseous systems,
changing one of pressure, temperature, volume, or amount, and measuring and plotting the
consequent change in another. A simulation of a chemical reaction (see point 4(a)) can
demonstrate the decreasing concentration of reactant species, the increasing concentration of
product species (giving meaning to the concept of reaction rate), and the approximately con-
stant concentration of intermediates, as well as provide a basis for understanding why the rate
of reaction might depend on reactant concentrations. The animations and simulations are
informed by research showing common student misconceptions about chemical concepts.

6. The CHACR student will see less compart-
mentalization of organic and general chem-
istry. The boundaries among organic chemistry,
physical chemistry, inorganic chemistry, and bio-
chemistry have merged at both the research and
applied levels, and new interdisciplinary areas such as
materials science, nanotechnology, and environmental
science have taken on importance. The old compart-
mentalization will be much less visible to a CHACR
student, and examples of new interfaces more visible.

How? CHACR encourages the student to link new
ideas in one chemistry topic (e.g., acid-base chem-
istry) to another (e.g., organic mechanisms) without a
distinction that they have moved to a different com-
partment. In the treatment of chemical kinetics, the
CHACR student is exposed to examples taken from

inorganic chemistry as well as from organic chemistry (including nucleophilic substitution
reactions). These are not seen as separate chemistries. To a large degree, there is a corre-
sponding blended treatment of molecular stereochemistry with no suggestion that this is
different for organic molecules than it is for inorganic molecules.

7. The CHACR student will experience rigorous chemistry. Rigour of treatment is
not sacrificed to achieve the sorts of deep learning described previously through rich stu-
dent-relevant contexts. On the contrary, rigour can assist deep learning—at least where
rigour is taken to mean the validity and accuracy of the presentation of chemistry, rather
than going to levels outside of the usefulness to first-year students. In this way, the
CHACR student will have a sound preparation for future studies.

How? The answer to this question lies in a myriad of details and considerations to which
the authors have attended. A few examples are presented here.

(a) Every type of reaction is presented as a competition process: precipitation as a
competition between forces between ions in a crystal and aquation of the ions by polar
water molecules; acid-base reactions as competition between species for H� ions;
oxidation-reduction reactions as competition for electrons; and complexation reactions as
competition for Lewis bases.

(b) IUPAC conventions, units, and nomenclature are used consistently throughout this
learning resource. The time is long gone when we should use local versions and
expect the students to make conversions in the workplace.

(c) The significance of speciation is an important idea perpetuated through CHACR. So, for
example, nowhere will the CHACR student encounter the symbolism “Na2SO4(aq),”
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maximum electrostatic potential

pKa

The correlation of pKa with maximum electrostatic potential on the carboxylic
acid hydrogen in each of the models shown is rationalized in terms of the
thermodynamics of aquation.
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which implies that there is an aquated species in solution with
the formula Na2SO4. Instead, the CHACR student will visu-
alize an aqueous sodium sulfate solution as one in which
there are Na�(aq) and SO4

2�(aq) ions, in a 2:1 ratio and more
or less independent of each other, with each type of ion con-
tributing to the chemical behaviour of the solution.

(d) It seems common elsewhere, in discussion of chemical
equilibrium, to present a “magic” expression known as the
equilibrium constant, K, and then to also introduce the
reaction quotient, Q. The CHACR student is first intro-
duced to the reaction quotient that can, in principle, have an
infinite number of values, and which changes during the
course of a reaction. The remarkable feature of Q is that it
has the same value in all reaction mixtures in which a given
reaction has reached the state of chemical equilibrium (at a
given temperature): this numerical value is called the equi-
librium constant at that temperature. This approach is con-
sistent with the derivation of free energy changes and
enthalpy changes in non-standard reaction mixtures from
standard values.

(e) The authors have been very careful to specify the condi-
tions (constant temperature, pressure, etc.) under which
relationships hold.

(f) The language that chemists use among themselves is not
necessarily appropriate for students. The authors have paid attention to re-packaging
the language of advanced science communication into forms that are appropriate for
first-year students, without losing validity.

What’s New in the Second Edition?
New Rich Contexts and Deeper Integration with Chemistry Concepts At the heart
of the second edition of Chemistry: Human Activity and Chemical Reactivity (CHACR),
are “rich contexts”—in Chapter 1 and introducing (through the first section) the chemistry
content of each chapter. These stories describe current progress and issues in modern
chemistry, give a sense of chemistry’s role in our world, and trigger motivation to learn
more about the underlying principles. New rich context narratives, describing important
ways in which chemistry takes on big challenges in our world and in the lives of ordinary
people, have been written for this edition, including: “Artificial Leaves: Personal Energy
Sources for Everyone by Mimicking Nature” (Chapter 16), “How Do Bacteria Tweet?
Social Networking with Chemistry” (Chapter 21), and “The Serendipitous Discovery of
Cisplatin, an Anti-Cancer Drug” (Chapter 23). Most of the other rich context narratives
have been updated, and at the end of each chapter-opening section, connections of the nar-
rative to chemistry principles in that and other chapters are explicitly listed, along with
chapter references.

Feedback from instructors has indicated that use of the rich contexts is an important
and distinguishing feature of CHACR, and that the narratives should be integrated even
more deeply into the discussion of chemistry principles throughout the chapters. In the
second edition, chapter discussions frequently refer to the issues raised in the trigger con-
text stories. In some cases, the authors have added or enhanced a final chapter section that
takes the chemistry principles discussed in the chapter full circle, back to more detailed
discussions of the issues raised in the chapter-opening narrative. Examples include “Ocean
Acidification Revisited Quantitatively” (Section 15.6), “Where There Is Methane, Is There
Life?” (Section 4.7), and Bacterial Cross-Talk Revisited (Section 21.5).

New Open-Ended Review Questions Students are helped to make connections
between contexts that matter and chemistry principles through many new, open-ended
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Students can build their own simulation of, for example, sodium
sulfate solution to see for themselves that there are no “aquated
Na2SO4 species in solution.”
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review questions that require additional research, reflection, and synthesis of ideas. These
open-ended questions can be worked individually by students, and also lend themselves
admirably to learning through peer-group discussions.

Presentation of the Latest IUPAC Standards Since the first edition was published, the
International Union of Pure and Applied Chemistry (IUPAC) has made significant changes
in the values it assigns to the atomic weights of elements. These include the recognition that,
for 12 elements, the variation of atomic weight (due to variation in isotopic distribution) from
source to source is greater than the precision with which atomic weights can be measured.
In these cases, the atomic weights are now listed as an interval, or span, of values. An under-
standing of this variability is crucial to chemists in forensic and other analyses, such as that
described in the rich context story of Section 2.1: Falsely Positive? The Chemistry of Drugs
in Sport. The second edition has added a new Section 2.13 to lead readers through the
rationale for these changes and to give guidance on using the new values. CHACR lists the
interval values of atomic weights of these 12 elements, as well as IUPAC-recommended
working values called “conventional atomic weights,” needed, for example, when students
carry out calculations involving unspecified samples. In addition, IUPAC determinations of
recently updated values for the standard atomic weights of 19 other elements are listed.

Organic Chemistry Coverage The philosophy of integrating examples from both
inorganic and organic chemistry with fundamental principles from physical and analyt-
ical chemistry throughout the basic treatment of chemistry concepts is retained in
the second edition. The organic chemistry needed for many first-year courses is ade-
quately covered in Chapter 3 (Models of Structure to Explain Properties), Chapter 4
(Carbon Compounds), Chapter 9 (Molecular Structures, Shapes, and Stereochemistry—
Our Evidence), and Chapter 10 (Modelling Bonding in Molecules). For courses offering
a more detailed coverage of the chemistry of carbon compounds, we have responded to
feedback from first edition users, and reduced the extent of organic chemistry from seven
additional chapters to three (Chapters 19–21), some, or all of which, can be used to meet
requirements. A new organizing idea to help students make sense of the myriad of reac-
tions in organic chemistry, is to classify functional groups as Levels 1–4, based on the
number of polar bonds between a carbon atom and electronegative heteroatoms such as
O, N, S, Cl, and Br. Reviewers were enthusiastic about the potential that this classifica-
tion scheme holds for organizing the content in these three chapters, and for helping stu-
dents make sense of the challenging set of concepts related to oxidation and reduction
reactions in organic chemistry. Those institutions requiring even more detailed coverage
of organic chemistry can make use of the enhanced organic coverage in the second inter-
national edition, which retains seven full chapters on the chemistry of carbon compounds.

Interactive Electronic Resources CHACR is a fully integrated print/electronic learning
resource. We have received positive feedback on our extensive range of e-resources—
interactive simulations, animations, tutorials, exercises, structure drawing tools, editable
spreadsheets, and molecular-level building activities. This range continues to be
unmatched by any chemistry textbook, providing students with various ways to engage
with the rich contexts, obtain advice and feedback on calculations, visualize molecular
structures and processes, and develop thinking skills using novel activities—all required
for a deep understanding of chemistry.

The complete collection of e-resources is now more readily accessible from the dedicated
Interactive Tutorial and Visualisation Resources website www.nelson.com/chemistry2ce.
Here, students and instructors can browse through the range of available e-resources, with or
without reference to the margin icons in the textbook.

The molecular dynamics, force-field simulation software, Odyssey, is recommended to
provide the immersive molecular-level visualization necessary to understand multi-particle
phenomena (such as intermolecular forces and solvation, chemical speciation, reaction
mechanisms); to interpret reactivity through electron distribution within molecules (using
electrostatic potential maps); and to discover quantitative relationships by plotting changes
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in properties in “molecular laboratories.” Many of the e-resources include structure and
simulation files that need to be opened in Odyssey. Instructors are now able to design their
own activities using this software, and assign them for marks.

Developments in the wide range of chemistry resources and visualization tools in the
King’s Centre for Visualization in Science have led to more interactive learning experiences
integrated with the rich context narratives and chemistry concepts in CHACR. The simula-
tion tools have been improved, particularly those demonstrating the power of IR and NMR
spectroscopy and mass spectrometry to reveal molecular structure. The information on cli-
mate change chemistry has been updated, with new resources to address “What if . . . ?”
questions. There are now more case studies involving applications of the state-of-the-art
technique of isotope ratio mass spectrometry to show students how chemists work to solve
challenging and significant problems.

Glossary and Index The authors have received considerable feedback that indicates that
students find the glossary of terms very useful. Consistent with this feedback, we have
included many more terms. Students who use the e-book will find it particularly useful that
a pop-up explanation of terms appearing in bold font will appear when the cursor hovers
over the term.

No text is perfect. Although the readability and clarity of ideas in the first edition has been
highly praised, the authors have considered line by line how to improve the expression of
ideas, as well as how to attend to pedagogical improvements.

Visual Tour of E-learning Resources
In the margins of each chapter, distinct icons point to e-resources that offer a rich variety of
electronic experiences students can access for learning either on their own or with other stu-
dents. Access the complete collection of e-resources at www.nelson.com/chemistry2ce.

Molecular Modelling
Students will be immersed in the molecular
world through models and animations.
Using their rich mental models, students are
able to visualize and thereby interpret the
subtlety and meaning of symbolic formulas,
equations for reactions, and the mathemat-
ical relationships between quantities.
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Molecular Modelling

e2.1 Represent molecular
structures using models 
and structural formulas.
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Think about It
These interactive resources involve active
problem solving with immediate feedback.
Some require interpretation of laboratory
videos; others, manipulation of simulations.

NEL

xxvi Preface

Molecular Modelling (Odyssey)
Through building molecular models and
constructing solution simulations of ions
and molecules in Odyssey, students will
acquire, at the molecular level, a “feel” for
molecular flexibility and freedom of move-
ment. Students can measure bond distances
and approximate energies, change the tem-

perature and pressure, and plot the results to discover mathematical relationships. In this
way, students are able to experiment in a “molecular sandbox”!

Molecular Modelling
(Odyssey)

e2.4 Compare simulations
of solid, liquid, and gaseous 
bromine.

Interpreting observations Spectroscopic evidence for non-equivalencePhoto: Charles D. Winters

15526_00_FM.qxp  3/1/14  12:40 PM  Page xxvi

Copyright 2015 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).



Web Link
This resource provides students with
links to sites that illustrate the applica-
tion of chemistry to real problems and
the latest developments in research,
such as the Protein Data Bank data-
base of molecular structures.
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Background Concepts and Taking It Further
These resources are intended for students who need to review prerequisite
knowledge and skills and those wishing more detail on a topic. They are
listed in the Chapter Outline on the first page of each chapter.

Taking It Further

e12.10 Read about how
solutes raise the boiling
point of a solution.

Photo: Charles D. Winters

How can 400,000 years of How is synthetic
temperature data be determined testosterone detected in

from ice core samples? professional athletes?

How can you tell if  your
honey has been diluted with

sugar syrup?

How do scientists discover the
sources of  methane molecules

on Earth and on Mars?
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The second edition of Chemistry: Human Activity, Chemical Reactivity uses the best of
print and digital resources to bring chemistry into the 21st century. Visualization and inter-
activity are elevated to a new level by integrating text features that connect the print con-
tent to digital assets, such as the MindTap Reader, Odyssey, Online Web Learning (OWL),
Organic Chemistry Flashware, and more.

OWLv2®

Developed by teaching chemists, OWL is the leading online learning system for chemistry.
Conceived over a decade ago at the University of Massachusetts, OWL is now the world’s
most widely used online chemistry solution, trusted by hundreds of thousands of learners
to improve their chemistry performance and grades.

OWL from Cengage Learning uses a mastery learning approach, meaning students
continue working problems until they show they have mastered the concept. Each time a
student tries a problem, OWL changes the chemicals, numbers, and wording of the ques-
tion to assess and ensure understanding of the underlying concept. OWL gives students
resources to practise chemistry at their own pace, visualize chemical concepts, improve
their problem-solving skills, and earn better grades. Users can find a wealth of varied
content—including tutorials, interactive simulations, visualization exercises, active fig-
ures, drawing tools, and more—to address different learning styles.

OWLv2 delivers all the depth, power, and reliability that have made this resource the
most trusted chemistry learning system for more than a decade. And now it adds remark-
able new instructor and learner enhancements to better help students master the subject.

New functionality in OWLv2:
• The “Are You Sure” window alerts students to errors prior to answer submission

• OWLv2 allows students to draw chemical structures directly in their assignment using
ChemDoodle Sketcher

• New, more intuitive assignment settings and options give you increased control

• Fully integrated gradebook—no set up required

• And much more!
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Interactive Exercises
Students can complete these exercises and
receive immediate feedback. For the more
challenging problems, students can access
stepwise tutorial assistance for suggested
strategies for solving the problems.
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About the Nelson Education Teaching Advantage (NETA)
The Nelson Education Teaching Advantage (NETA) program delivers research-based
instructor resources that promote student engagement and higher-order thinking to enable
the success of Canadian students and educators. To ensure the high quality of these mate-
rials, all Nelson ancillaries have been professionally copy-edited.

Be sure to visit Nelson Education’s Inspired Instruction website at http://www
.nelson.com/inspired to find out more about NETA. Don’t miss the testimonials of instruc-
tors who have used NETA supplements and seen student engagement increase!

Planning Your Course NETA Engagement presents materials that help instructors
deliver engaging content and activities to their classes. NETA Instructor’s Manuals not
only identify the topics that cause students the most difficulty, but also describe techniques
and resources to help students master these concepts. Dr. Roger Fisher’s Instructor’s Guide
to Classroom Engagement accompanies every Instructor’s Manual.

Assessing Your Students NETA Assessment relates to testing materials. NETA Test
Bank authors create multiple-choice questions that reflect research-based best practices
for constructing effective questions and testing not just recall but also higher-order
thinking. Our guidelines were developed by David DiBattista, psychology professor at
Brock University and 3M National Teaching Fellow, whose research has focused on mul-
tiple-choice testing. All Test Bank authors receive training at workshops conducted by
Prof. DiBattista, as do the copy-editors assigned to each Test Bank. A copy of Multiple
Choice Tests: Getting Beyond Remembering, Prof. DiBattista’s guide to writing effective
tests, is included with every Nelson Test Bank.

Teaching Your Students NETA Presentation has been developed to help instructors
make the best use of Microsoft® PowerPoint® in their classrooms. With a clean and
uncluttered design developed by Maureen Stone of StoneSoup Consulting, NETA
PowerPoints features slides with improved readability, more multi-media and graphic
materials, activities to use in class, and tips for instructors on the Notes page. A copy of
NETA Guidelines for Classroom Presentations by Maureen Stone is included with each
set of PowerPoint slides.

Technology in Teaching NETA Digital is a framework based on Arthur Chickering and
Zelda Gamson’s seminal work “Seven Principles of Good Practice In Undergraduate
Education” (AAHE Bulletin, 1987) and the follow-up work by Chickering and Stephen C.
Ehrmann, “Implementing the Seven Principles: Technology as Lever”(AAHE Bulletin,
1996). This aspect of the NETA program guides the writing and development of our
digital products to ensure that they appropriately reflect the core goals of contact, collab-
oration, multimodal learning, time on task, prompt feedback, active learning, and high
expectations. The resulting focus on pedagogical utility, rather than technological
wizardry, ensures that all of our technology supports better outcomes for students.

Instructor Resources
All NETA and other key instructor ancillaries are provided on the Instructor
Companion Site at www.nelson.com/chemistry2ce, giving instructors the ultimate tool
for customizing lectures and presentations. The NETA PowerPoint slides, Image
Library, and Turning Point slides are also available on the Instructor’s Resource CD
(ISBN 0-17-656870-0).

NETA Test Bank
This resource was written by Brett McCollum, Mount Royal University. It includes over 1000
multiple-choice questions written according to NETA guidelines for effective construction and
development of higher-order questions. The Test Bank was copy-edited by a NETA-trained
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editor and reviewed by David DiBattista for adherence to NETA best practices. Also included
are true/false, completion, short answer, matching, problem, and essay type questions.

The NETA Test Bank is available in a new, cloud-based platform. Testing Powered by
Cognero® is a secure online testing system that allows you to author, edit, and manage test
bank content from any place you have Internet access. No special installations or downloads
are needed, and the desktop-inspired interface, with its drop-down menus and familiar, intu-
itive tools, allows you to create and manage tests with ease. You can create multiple test ver-
sions in an instant, and import or export content into other systems. Tests can be delivered
from your learning management system, your classroom, or wherever you want.

NETA PowerPoint
Microsoft® PowerPoint ® lecture slides for every chapter have been created by Philip
Elder. These slides feature key figures, tables, and photographs from the second edition of
Chemistry: Human Activity, Chemical Reactivity. NETA principles of clear design and
engaging content have been incorporated throughout, making it simple for instructors to
customize the deck for their courses.

Image Library
This resource consists of digital copies of figures, short tables, and photographs used in the
book. Instructors may use these jpegs to customize the NETA PowerPoint or create their
own PowerPoint presentations.

NETA Instructor’s Manual
This resource was written by Rabin Bissessur, University of Prince Edward Island. It is
organized according to the textbook chapters and addresses key educational concerns, such
as typical stumbling blocks student face and how to address them.

Instructor’s Solutions Manual
This manual, prepared by Jillian Hatnean, University of Toronto, and Mark Vaughan, Capilano
University, has been independently checked for accuracy by Rabin Bissessur, University of
Prince Edward Island. It contains complete solutions to all exercises in the book.

DayOne
DayOne—Prof InClass is a PowerPoint presentation that instructors can customize to
orient students to the class and their text at the beginning of the course.

TurningPoint®

Another valuable resource for instructors is TurningPoint® classroom response software
customized for the second edition of Chemistry: Human Activity, Chemical Reactivity.
This resource was written by Jeff Landry, McMaster University. Now you can author,
deliver, show, access, and grade, all in PowerPoint, with no toggling back and forth
between screens. With JoinIn you are no longer tied to your computer. You can walk about
your classroom as you lecture, showing slides and collecting and displaying responses
with ease. If you can use PowerPoint, you can use JoinIn on TurningPoint. (Contact your
Nelson publishing representative for details.)

Organic Chemistry Flashware
http://flashchem.nelson.com
Organic Chemistry Flashware is a collection of interactive web-based courseware
designed to give step-by-step control over reaction mechanisms, with simultaneous mul-
tiple representations of orbitals, energy changes, and electron movements. This collection
of over 130 learning objects has been produced to enhance the traditional lecture experi-
ence and is optimized for both the individual computer user and classroom projection.
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Student Learning Resources
The second edition of Chemistry: Human Activity, Chemical Reactivity with OWLv2 will
help you succeed in chemistry through its integrated, step-by-step approach to problem
solving and its easy-to-understand presentation.

OWLv2
Developed by teaching chemists, OWL is the leading online learning system for chem-
istry. Conceived over a decade ago at the University of Massachusetts, OWL is now the
world’s most widely used online chemistry solution, trusted by hundreds of thousands of
learners to improve their chemistry performance and grades.

OWLv2 gives students resources to practise chemistry at their own pace, visualize
chemical concepts, improve their problem-solving skills, and earn better grades. Users can
find a wealth of varied content—including tutorials, interactive simulations, visualization
exercises, active figures, drawing tools, and more—to address different learning styles.

Odyssey® is a molecular dynamics force-field engine that accurately portrays the molecular
world for introductory and general chemistry classes in colleges and universities. Utilizing
pre-built or student constructed molecular simulations, Odyssey provides an interactive envi-
ronment for learning and exploration. The Chemistry: Human Activity, Chemical Reactivity
integrated print/digital resource makes it easy for students and instructors to be immersed in
the molecular world to learn molecular-level concepts like intermolecular bonding, polarity,
heat transfer, and other threshold concepts. If your instructor has chosen to bundle Odyssey
with your text, install the Odyssey software onto your computer from the Wavefunction web-
site (wavefun.com) and use the access code provided to access the program.

Student Solutions Manual
ISBN-10: 0-17-668863-3
The Student Solutions Manual contains detailed solutions to all odd-numbered end-of-
chapter exercises. Solutions match the problem-solving strategies used in the text. Prepared
by Jillian Hatnean, University of Toronto, and Mark Vaughan, Capilano University; techni-
cally checked by Rabin Bissessur, University of Prince Edward Island.

Chemistry: Student Activity, Chemical Reactivity Workbook
ISBN-10: 0-17-658352-1
Study more effectively and improve your performance at exam time with this student
workbook! The Chemistry: Student Activity, Chemical Reactivity Workbook focuses on
the thinking processes required to succeed. Each chapter of this workbook contains
chapter highlights/topic map, study strategies, exercises to strengthen visualization skills,
a math skills primer, and suggestions for group study activities. Prepared by Rabin
Bissessur, University of Prince Edward Island, and John Chik, Mount Royal University.

Integrated Media on the CHACR Interactive Tutorial and
Visualization Resources Website
www.nelson.com/chemistry2ce The digital resources in the Chemistry: Human
Activity, Chemical Reactivity project are an integral part of the learning experience,
bringing the case studies and molecular-level concepts to life. A margin icon indicates
when a particular resource on the website is most relevant to extend your understanding,
with an animation, simulation, video of a reaction, an interactive tutorial with feedback, or
a practice exercise. Each type of resource—Molecular Modelling, Taking It Further, Think
about It, Background Concepts—has a brief description indicating what you will do in the
activity. Learning is an active process, and educational research indicates that learning is
more efficient if you process and apply ideas while you read about them.
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Access to the website is included with the purchase of a new text. Simply register
once, using the sign-on card accompanying this text, and you have full access to the most
comprehensive collection of e-resources for any chemistry textbook on the market.
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1.1 Chemistry: Human Activity, Chemical Reactivity
Read the title of this textbook once again: Chemistry: Human Activity, Chemical
Reactivity. As you study chemistry this year, the authors hope you will obtain a much
better understanding of how human activity and chemical reactivity are woven together in
every aspect of modern life. You’ll be in good company! Stressing that education in and
about chemistry is critical to address challenges such as global climate change and sustain-
able supplies of clean water, food, energy, and medicine, the United Nations declared 2011
to be the International Year of Chemistry. Activities took place around the world to
increase understanding of chemistry and how the tools of chemistry are at work in almost
every aspect of modern life. 

This first chapter tells the stories of two people who carry out research in chemistry
to improve our world. You would not recognize them on the bus or in the supermarket as
chemists. They are simply curious, hard-working people who use logic and creativity as
they work with a research team to design and interpret experiments.

First we’ll meet David Dolphin, a Canadian chemist who has designed and made new
substances that have improved the quality of life for over a million people suffering from
cancer or eye disease. Then we’ll meet Gavin Flematti, an Australian chemist who, while
he was a postgraduate student, identified a compound in smoke that causes plant seeds to
germinate after a forest fire. He then found a way to make this compound in the laboratory.

You’ll see with these two people that the work chemists carry out is challenging for
many reasons, not least of which is that the particles they study—particles that make up
everything in our world—are too small for us to see directly. So chemists develop and use
instruments to extend their vision and to understand how the things we observe fit with
molecular-level explanations.

As in so many areas of modern chemistry, in both of these stories, the interaction of
electromagnetic radiation with matter plays a critical role. In the first case, visible light from
a laser triggers the production of molecules that selectively destroy undesirable cells in
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body organs. In the second, selective absorption of electromagnetic radiation is the key to
understanding the three-dimensional structures of newly discovered molecules in smoke.

Spectroscopy is the study of characteristic patterns of absorption of electromagnetic
radiation, used to identify substances and to provide information about the structures of
their molecules. Chromatography is the science of separation of compounds from com-
plex mixtures. These two techniques—part of an array of instrumental methods that have
revolutionized the practice of chemistry—are at the heart of the stories about the success
of these two people and the significance of the research they have carried out.

On your first reading, you should not expect to completely understand the chemistry
related to these two stories. In Section 1.4 and later in the text, we return to the concepts
introduced here. Through these stories and the discussion questions that follow, we hope
you will appreciate that advances in chemistry happen today, and that they can improve
life for humans and the environment—the very reasons the United Nations declared an
International Year of Chemistry. The advances described in this chapter and this book did
not take place overnight, and they required sound knowledge of chemistry and other dis-
ciplines. They were made by logical thought processes and careful experiments, carried
out by teams of creative people—people like those you meet every day. Perhaps most of
all, we hope you appreciate that you, too, could participate in significant research in chem-
istry or other sciences. You might want to read these stories again later for an even deeper
appreciation.

1.2 Harnessing Light Energy and Exciting Oxygen

NEL

2 C H A P T E R  1 Human Activity, Chemical Reactivity

Jo
hn

 C
ra

w
fo

rd
/N

at
io

na
l C

an
ce

r 
In

st
itu

te

C
ou

rt
es

y 
of

 D
r.

 D
av

id
 D

ol
ph

in

15526_01_Ch01.qxp  2/28/14  8:23 PM  Page 2

Copyright 2015 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).



We live each day in a tropospheric atmosphere of oxygen and nitrogen molecules, and move
around on the earth’s crust, made mostly of oxygen atoms in combination with other
elements such as silicon, nitrogen, carbon, and sulfur. Oxygen atoms are in the middle of
H2O molecules, which comprise the substance water, which in turn covers three-fourths of
the surface of our planet. Without oxygen, life as we know it would be impossible. Molecular
oxygen, O2, makes up one-fifth of the air that we breathe. Our brains consume about 20% of
the molecular oxygen that we breathe in. This oxygen fuels numerous processes, including
the electrical circuits that enable us to read and to think about our molecular world.

And yet, many forms of oxygen are highly toxic to human cells, including one form
of molecular oxygen.

Two Energy States of Oxygen Molecules
How can molecular oxygen (O2) be both essential to life and highly toxic? This riddle can
be answered if we realize that O2 can exist in different forms or energy states. This story
is about two of those states: singlet oxygen and triplet oxygen. The terms singlet and
triplet refer to differences in the energy levels of the electrons of O2 molecules, explored
further in Chapter 10. Those differences in the energies of the electrons of O2 molecules
cause a profound difference in chemical reactivity—the difference between life and death
for cells.

In triplet O2, the electrons in the O2 molecules are in their lowest energy state (the
ground state, [>>Section 8.5]). This is the oxygen we breathe. The electrons in singlet
oxygen molecules are in higher energy (excited) states. Singlet O2 molecules can be
formed when energy is transferred to triplet O2 molecules as they collide with other
“excited” molecules. Because singlet O2 is exceptionally reactive, it doesn’t last long.

While triplet O2 in the air we breathe fuels life, singlet O2 has very different physical
properties and chemical reactivity. It bleaches coloured materials and polymers, and is
highly toxic to dividing human cells. Singlet O2 can be produced in laboratories as well as
in nature. Respiration in animals and photosynthetic reactions in plants produce small
amounts of singlet O2, and chemists have learned a lot
about how photosynthetic microbes and plants respond
to the production of this toxic substance.

Chemotherapy and Photodynamic
Therapy
Toxic or poisonous substances can sometimes be used
to advantage in medicine. Chemotherapy is the use in
medicine of substances that are selectively toxic to
malignant cells or a disease-causing virus or bac-
terium. Because of its toxicity to dividing cells, singlet
O2 has found a role as a chemotherapeutic agent. An
important chapter in the singlet O2 story is the work of
Professor David Dolphin from Canada’s University of
British Columbia. He and his research collaborators �
created Visudyne™, one of the world’s most suc-
cessful ophthalmic products. Since 2000, Visudyne™
has been used to treat more than a million people in
75 countries for age-related macular degeneration
(AMD), the leading cause of vision loss for people
over the age of 50 in the Western world.

NEL
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David Dolphin with his research group, who have come from around the world. In
recognition of the impact of his work, Dolphin received Canada’s top science prize
in 2005. He has also been appointed an Officer to the Order of Canada and desig-
nated a “hero of chemistry” by the American Chemical Society.�
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“I get my kicks out of solving problems, whether they’re basic ones or more
applied . . . I know from my own graduate students that they’re very excited
about getting involved in research that might eventually benefit humanity.”

David Dolphin
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The original focus of Dolphin’s research was treating skin and other cancers, rather
than eye diseases. But, as often happens in chemistry research, a successful treatment for
AMD was discovered unexpectedly. Like many scientists employed by universities,
Dolphin works with a research team of scientists and scientists-in-training, many of whom
are graduate students completing their PhD degrees in chemistry and related disciplines. His
research team was studying porphyrins, a class of large cyclic molecules fundamentally
important to the function of living systems. They absorb visible light strongly, and therefore
are coloured. Examples of porphyrin or porphyrin-like substances are the green chlorophyll
pigment in plants and the bright red hemoglobin in red blood cells (Figure 1.1). � Their
light-absorbing properties make them useful in technologies such as rewriteable CDs and
DVDs. And this same property gives them a key role in photodynamic therapy (PDT)—
the use of light in medical treatment.
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of a heme group from a hemoglobin
molecule. The iron atom (Fe, green) is in
the centre of the large porphyrin ring,
identified by its four nitrogen atoms
(N, blue).
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F I G U R E  1 . 2 Steps in making a
singlet oxygen molecule. Laser light
energy (1) is absorbed by a
photosensitizer molecule (2) in a cell,
converting the molecule to its excited
state (3). Energy is transferred (4) to a
nearby triplet oxygen molecule to form
a “lethal” singlet oxygen molecule (5).

Think about It

e1.2 Watch a video 
illustrating the mode of 
action of photodynamic therapy.

The light-absorbing properties of porphyrins also make them good photosensitizers,
substances whose electrons can be excited by absorbing light of appropriate wavelength.
They can then transfer their extra energy through molecular collisions to substances such
as triplet O2—producing singlet O2. Dolphin had the imagination to see how porphyrin
photosensitizers and light might work together with oxygen in medicine.

But Dolphin wasn’t the first to think about photodynamic therapy. His breakthroughs
built on many years of work by chemists in other countries. The basic technique was first
developed in 1972 at the Roswell Park Cancer Institute in Buffalo, New York. PDT is a min-
imally invasive medical treatment with three components that work together: (a) the adminis-
tered drug (a photosensitizer), (b) light to excite the photosensitizer molecules, and (c) triplet
O2 in tissue (Figure 1.2). Excited photosensitizer molecules transfer energy to triplet O2 in
tissue, converting some of it to singlet O2, which can kill rapidly growing cancer cells. �
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In Dolphin’s PDT work, the photosensitizer is a porphyrin-containing compound,
which is administered to the site of rapidly growing cells. The light source is usually a red
light from light-emitting diodes or a laser diode.

Dolphin and his research team initially developed porphyrin PDT treatment for various
cancers on or near the surface of the skin. The patient is given a dose of a photosensitizer
or a substance that can be metabolized by the body into a photosensitizer. The drug might
be injected at the site of the cancer or it might be designed to attach itself to lipoprotein
molecules in the bloodstream so that it is transported to the affected area. � After waiting
an appropriate amount of time, the physician applies red light to the target site. In one
second, one molecule of Visudyne™ is able to make more than one million molecules of
singlet O2. The singlet O2 that is formed lasts for only about a microsecond (1 � 10�6 s),
but during that time it damages or destroys the rapidly growing cancer cells.

It is important that, as far as possible, singlet O2 is produced only at the site of the
cancer, or otherwise healthy cells may be killed. Since the half-life (t1/2) of the photosen-
sitizer in the human body is about five hours, a patient undergoing PDT must be careful
about exposure to sunlight after treatment to avoid singlet O2 production in other parts of
the body where small amounts of the photosensitizer might still be present.

Unexpected Results: Effect on Vision
The development of Visudyne™ came from an unexpected turn in Dolphin’s PDT cancer
research. Patients undergoing PDT clinical trials for cancer reported beneficial effects on
their vision. Researchers learned that some porphyrin photosensitizers had the unexpected
effect of closing down abnormally growing blood vessels in the eyes of patients who also
suffered from the most common “wet” form of age-related macular degeneration. �Wet
AMD is caused by the growth of an abnormal tangle of new blood vessels under the
macula in the retina. These vessels then leak fluid and cause scar tissue, leading to the
rapid loss of sight. � �

Visudyne™ is an equal mixture of two porphyrin-containing photosensitizers whose
molecules are isomers, and have the structures shown in Figure 1.3.

The normal protocol for treating AMD with Visudyne™ can now be carried out in a
doctor’s office. The photosensitizer drug is administered intravenously, where it attaches to
lipoprotein molecules and is carried selectively to the abnormal vessels in the eye. After five
minutes, a red laser is shone into the patient’s eye through a microscope for just over one
minute. This excites the photosensitizer molecules, which then transfer their excess energy
to triplet O2, producing singlet O2 to destroy the abnormal blood vessel cells.

Finding the Right Combination of Photosensitizer and Light
It took years of research by Dolphin’s research team to design and then synthesize
VisudyneTM. The first photosensitizer used by Dolphin’s group was already available in
the form of the drug Photofrin from the Roswell Institute, but it was a mixture of a count-
less number of compounds—most of which are not active in treating AMD. It was very
difficult to reproduce the production of different batches of such a complex mixture.
Photofrin had a much longer half-life in the body, so patients had extreme sensitivity to the
sun for a period of time, and exciting the drug required light in the blue region of the vis-
ible spectrum. Since blue light does not penetrate far into human tissue, Photofrin is lim-
ited to treating only conditions on or very close to bodily surfaces.

In designing a new photosensitizer Dolphin knew that naturally occurring porphyrin
compounds readily absorb light, but found that the iron atoms in the centre of the
porphyrin rings in heme must be removed for PDT applications, as they prevent singlet O2
from forming. When Dolphin’s research team set to work to design and make their own
porphyrin compounds in the lab, they first made compounds that were slightly different
than the mixture of two compounds in Figure 1.3. At the bottom of each structure, shown
in red, are two functional groups [>>Section 3.11], one of which is a carboxylic acid,
and one an ester. In the first photosensitizer they designed, both of these groups were
esters, but they found that not nearly enough of the drug dissolved in water, so they
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Lipoproteins are molecules that are
combinations of proteins and fats, and
are responsible for transporting fats and
fat-like substances like cholesterol
through the blood.
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replaced one of the ester groups with a carboxylic acid group to increase solubility. This
change proved to give the right combination of water solubility and high activity as a pho-
tosensitizer. And unlike Photofrin, red light is needed to excite the VisudyneTM molecules,
and red light penetrates somewhat further than blue or green light into human tissue.

Next Steps for PDT and Porphyrins
Treating a complex disease like AMD requires ongoing research and development. Chemists
are now working to improve many aspects of PDT, focusing especially on the design of pho-
tosensitizers and sources for the visible light needed to excite them. Efforts are directed
toward making new single-compound photosensitizers capable of strongly absorbing light of
a specific wavelength that is not absorbed by blood. Other research goals are to develop
sources of light that will penetrate more deeply into tissue without causing damage. Also
needed are better methods of formulating and administering photosensitizers (or compounds
that can be converted into photosensitizers) to patients. Computer modelling studies help
chemists predict how to modify portions of photosensitizer molecules to improve their selec-
tive accumulation at cancer sites, and nanoscale substances are being custom-made to trans-
port photosensitizers, increase their efficiency, and reduce side effects of PDT.

Since VisudyneTM was first made and approved, alternatives for treating AMD have
been found that work in entirely different ways to treat macular degeneration. But there is
still a significant market for the drug around the world, and new protocols, which combine
Visudyne with other drugs, are also being tested.

Understanding porphyrin chemistry has now led to a remarkable range of applica-
tions. In medicine, PDT is now also being used to treat quite a range of cancers, to facili-
tate wound healing, treat dental disease, inactivate mammalian viruses and bacteriophages,
and treat water and sewage. And research groups are now trying to use the light-absorbing
ability of porphyrins to create inexpensive electrodes for fuel cells [>>Section 7.l], to make
catalysts to produce ammonia gas from nitrogen gas [>>Section 13.1], and to convert
water into hydrogen gas and oxygen gas.

1.3 Where There’s Smoke, There’s Gavinone
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F I G U R E  1 . 3 The two
photosensitizer molecules that make up
Visudyne™. The cyclic porphyrin rings
are highlighted, and each bend in the
structure in this representation
symbolizes the presence of a carbon
atom. Two molecules with the same
formula but a different arrangement of
atoms, such as these two, are called
isomers [��Section 4.5]. Can you spot
the subtle difference between the two
isomers?
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Throughout this textbook you’ll read about reactions, compounds, and processes named
after the people who discovered them. But can you imagine having a compound that might
be worth millions of dollars named after you? That happened recently to an Australian
chemistry student who discovered that trace amounts of a previously unknown compound
in the smoke from wood fires causes plant seeds to start growing. The student’s name is
Gavin Flematti, and for a time the new compound was named Gavinone in his honour by
the botanists on his research team. �

The task wasn’t easy. Gavinone is only one of thousands of compounds found in wood
smoke, yet Flematti and his collaborators proved that very low concentrations (less than
1 part-per-billion) of this compound can cause seeds to germinate.

His discovery is important. Researchers knew that a compound causing seeds to ger-
minate would be of great interest to agricultural and chemical industry. It could be used to
control weeds, possibly saving farmers around the world millions of dollars. It might also
help regenerate native plant species without the use of fire, or help plants grow in
reclaimed soil on top of abandoned mine sites. Flematti and his research supervisors knew
that they needed to start by understanding at the molecular level what causes germination
after fires in nature. Eventually they might apply that knowledge to make substances in the
laboratory that could be applied to seeds or to soil.

Let’s try to understand the steps Flematti and his research team took in making this
breakthrough. It took years of sleuthing as an undergraduate and then as a PhD chemistry
student to isolate this single compound from smoke, prove that it causes seeds to germi-
nate, identify the three-dimensional structure of its molecules, and then synthesize it in
the laboratory.

How Do Seeds Germinate?
First, they needed to understand some plant biology. How do plant seeds survive in seed
packets or on the ground and then germinate? Seeds can remain dormant until environ-
mental conditions are suitable for the growth of the plant through the vulnerable seedling
stage. Seed germination begins with the uptake of water by dry seeds. Then, a part of the
embryo called the radicle, which develops into the primary root, penetrates the protective
coating. This is a desirable characteristic for plants in nature, and can also be beneficial
in agriculture. For example, wheat farmers often sow seed in dry land prior to seasonal
rains, knowing that germination won’t occur until the soil receives enough moisture.
Seeds on the heads of grain also must remain dormant so that they do not germinate
before harvesting.

On the other hand, the seeds of some crops remain dormant after planting, and not all
of them germinate when the farmer or nursery owner would like. Crop growers would
place great value on a substance that promotes germination of all seeds at the same time,
and such understanding could contribute to strategies to address severe food shortages in
parts of the world. For example, it would be very useful if weed seeds in the ground could
be made to germinate before the main crop is sown. The weed plants could then be sprayed
with herbicide and eliminated as competitors for soil nutrients.

Where There Is Fire, There Is Smoke
Next, they needed information about fires. It is astonishing to see that, following a major
forest fire, a blackened landscape can explode into colour the next spring. Seed germi-
nation was thought to be due to heat from the fire cracking open the seeds lying dor-
mant in the ground. Heat is indeed important for some plants, but scientists in South
Africa, Australia, and North America had shown that smoke alone, in the absence of
heat, can also cause many seeds to germinate. Smoke is a very complex chemical soup,
composed of many thousands of compounds. � Throughout history, being the first to
make an important discovery has often been a strong motivating force in science.
Flematti and his collaborators, along with competitors from several other countries, set
out on a race to be the first to identify which bioactive compound or compounds in
smoke promote germination.
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Where There’s Smoke, There’s Chemistry
Smoke from a wide variety of plant materials was shown earlier to be effective in causing
seeds to germinate, but little was known about why this worked. Somehow, compounds in
smoke must interact with others in seeds. Flematti did know that the compounds in smoke
responsible for germination dissolve more easily in organic solvents than in water. This
suggested that the active substances are probably one or more of the millions of organic
compounds [>>Section 3.6] whose molecules are made of a framework of carbon atoms
with hydrogen atoms attached, and often include oxygen, nitrogen, or several other types
of atoms. Although a number of components of smoke had been previously identified by
other researchers, none of these promoted germination. The bioactive compound was like
a “needle in the haystack,” hiding among the thousands of compounds in smoke.

How to Find the “Needle in the Haystack”
The challenge Flematti faced is common in natural products chemistry, the branch of
chemistry that studies compounds produced by living organisms. The general approach to
finding the bioactive compound from so many possibilities involves several steps and a
great deal of patience.

First, Flematti would need a reproducible source of the compounds in smoke from
wood fires. Then, he would need to collect the complex mixture of compounds from that
smoke, and determine if it helped seeds germinate. Since there are thousands of possible
compounds that could be responsible, he would need to use repeated chromatographic
separation techniques to divide the compounds into several groups, each of which contains
fewer compounds. On each of those smaller groups of compounds, he could then use
screening methods, called bioassays, to see if that group contained the active compound(s).
This process of separation and bioassays would need to be repeated over and over for the
“haystack” containing the “needle” to become smaller and smaller.

If a single compound could be isolated and shown to cause the bioactivity, the next
challenge would be to determine its identity. Flematti would need to use powerful methods
of structural determination, such as mass spectrometry [>>Chapter 3], nuclear magnetic
resonance (NMR) spectroscopy, and X-ray crystallography [>>Chapter 9], to determine
the composition and three-dimensional structure of the molecules of that compound.
Finally, once the molecular structure of the substance was known, he might try to synthe-
size the same compound in the laboratory. This would help to prove that its structure was
correct, and provide larger amounts for further testing and commercial use.

Chromatography is used to separate compounds from mixtures. Spectroscopic
techniques, based on the way different molecules interact with electromagnetic
radiation, are powerful tools for identifying compounds. A bioassay is a test for
biological activity.

Producing and Testing Wood Smoke
Flematti and his collaborators burned laboratory filter paper as a source
of smoke which is passed through water to make “smoke water.” This
seemed reasonable, since filter paper is mostly cellulose, the primary
structural component of all green plants. They used a rapid bioassay
technique developed at the University of Natal in South Africa to see
if smoke caused germination. When smoke water was applied to the
Grand Rapids variety of leaf lettuce seeds kept in the dark, germination
took place within 24 hours. Only 45% of the seeds germinated in
absence of smoke (called a “control” trial), while 90% germinated with
smoke water application. Figure 1.4 shows their finding that these let-
tuce seeds and seeds of some Australian native plant species responded
to smoke compounds.

They then knew that the active compound is found in burning
cellulose, which is only one of many compounds in plants. This told
them which “haystack” to start looking in.
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F I G U R E  1 . 4 Bioassay effectiveness. Percent germination 
of Grand Rapids lettuce seeds and two Australian native plant
seeds in response to smoke from burning filter paper
(cellulose). Filtered water (with no smoke components) was
used for the control experiments.
Source: Flematti et al., Plant and Soil, 263: 1–4, 2004.
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Repeated Separations and Bioassays
Now the part of the task requiring the greatest patience—narrowing down the many possible
compounds that might be causing the seed germination. Flematti used extraction techniques
to separate the complex mixture of compounds in smoke into groups of compounds or
fractions based on their acid/base and solubility properties. A bioassay was then used on each
of those fractions to see if they contained the bioactive compound(s). Several types of
chromatography were then used one after the other on the bioactive fractions, to create
smaller and smaller groups of compounds. To give you an idea of the complexity of the
problem, Figure 1.5 shows one of Gavin’s gas chromatogram charts indicating the number
of compounds found in just one fraction from plant-derived smoke water. Each “peak” or
upward spike in the chromatogram represents a different chemical compound. One of these
would eventually prove to be Gavinone. But which one?
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F I G U R E  1 . 5 Gas chromatogram of
neutral fraction from plant-derived smoke
water. Each peak in this chromatogram
corresponds with a particular compound
after it is pushed through the column by
an unreactive gas. The horizontal axis is
the time (minutes) before exit of each
compound from the column. The vertical
axis indicates the response of the
detector at the exit, indicating the
relative amount of substance reaching
the detector at that particular time.
Source: Gavin Flematti.

Isolating the Bioactive Compound
After many rounds of chromatography separations, Flematti took 5 mg of the most active
fraction and yet another solvent mixture. One of these fractions showed only about a dozen
compounds. But he had less than 0.2 mg of material to work with in that fraction. That is
about the mass of 1/100th of a grain of rice!

So as he had done many times before, back to the beginning again, burning an even
larger amount of filter paper and repeating the many separations. This time he obtained a
whopping amount of 1 mg (0.001 g) of each of three bioactive fractions, enough to work
with using sophisticated instrumental techniques. From one of those fractions, Flematti
separated out a single compound, and it was bioactive. The compound had a molecular
weight of 150. For the first time ever, the compound in smoke causing seed germination
had been isolated. The “needle in the haystack” had been found—but its identity, apart
from its molecular weight, was still unknown.

What Is the Bioactive Compound?
As you will see in Chapter 3, a mass spectrometer can reveal the molecular weight of a
compound, as well as how it breaks up into smaller pieces called fragments. Those
fragments give information about the pattern of connectivity of atoms in each molecule.
Large international databases list the fragment patterns in the mass spectra of every
compound reported in the research literature. The mass spectral fragmentation pattern
[>>Sections 3.9, 3.10] of the active component in smoke did not correspond with that of
any other previously known compound. The active compound had never been reported in
the chemistry literature before!

Mass spectra indicated a molecular weight of 150, and exact correspondence of the
existence of certain isotopes by high-resolution mass spectrometry [>>Section 3.8]
showed its formula to be C8H6O3. From the molecular weight, the mass spectral fragmen-
tation patterns, the wavelengths of ultraviolet light absorbed, its solubilities in different
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